Flowschool - Образовательный портал

Состоит космических кораблей. Три поколения космических кораблей, ссср

В книге освещена малоизвестная для широкого круга читателей область космонавтики, связанная с отбором, обучением, психологической, летной и инженерной подготовкой космонавтов. Отражены практически все направления сложившейся за последние 23 лет системы подготовки космонавтов. Книга даст ясное представление о том, как воспитываются и формируются профессиональные специалисты высокого класса. Последовательно раскрыты этапы становления личности космонавта, начиная с отбора кандидатов в космонавты, прохождения ими общекосмической подготовки с привлечением различных технических средств.

Для широкого круга читателей.

Опыт человечества, с одной стороны, учит тому, что объять необъятное практически невозможно. Но с другой, - человечество стремится к этому, применяя разделение труда. Принцип разделения труда находит свое применение и в экипаже космического корабля, состоящего из нескольких человек.


Экипаж «Союза Т-10» на одной из тренировок на тренажёре «Союза»

Для того чтобы конкретно представить себе многое из того, что написано в этой книге, по-видимому, целесообразно привести в качестве иллюстрации не абстрактный, а реальный, выполнивший конкретную программу полета, экипаж космического корабля, например экипаж третьей основной экспедиции станции «Салют-7», выполнивший 237-суточный космический полет, рекордный в настоящее время по продолжительности.

Полет этого экипажа, с одной стороны, стал уже достоянием истории космонавтики, но, с другой, - убедительным, на наш взгляд, примером дружного, работоспособного и сплоченного экипажа. Коротко сформулируем функциональные обязанности членов экипажа:

Командир корабля - несет ответственность за безопасность экипажа и выполнение всей программы полета, выполняет все динамические операции, некоторые эксперименты;

Бортинженер - анализирует и контролирует работоспособность всех систем космического корабля и научно-исследовательской аппаратуры, выполняет эксперименты;

Космонавт-исследователь - отвечает за состояние здоровья членов экипажа, выполняет научно-исследовательскую часть программы полета.

Не останавливаясь на программе полета, дадим представление о социально-психологических портретах членов экипажа, выполнивших этот полет.

Командир экипажа космического корабля «Союз Т-10» и «Союз Т-15»

Кизим Леонид Денисович, 1941 г. рождения, украинец, имеет квалификации: летчик-космонавт 1 класса, военный летчик 1 класса, летчик-испытатель 3 класса.

В 1963 г. закончил Черниговское ВВАУЛ, в 1975 г. - заочный факультет ВВА им. Ю. А. Гагарина. К настоящему времени освоил 12 типов самолетов, имеет налет 1448 часов, 80 парашютных прыжков различной сложности. Подготовлен и выполняет полеты в простых и сложных метеоусловиях, днем и ночью. В 1966 г. принят в ряды Коммунистической партии Советского Союза.

В центре подготовки космонавтов с 1965 г. В 1967 г. с оценкой «хорошо» закончил курс общекосмической подготовки. С 1974 г. находился на подготовке к полетам на космическом транспортном корабле «Союз-7» и орбитальной станции «Салют». С 10.79 по 11.80 года успешно прошел этап подготовки на станцию «Салют-6» сначала в составе экипажа: Л. Д. Кизим и О. Г. Макаров, а затем с 29.11.80 по 11.12.80 выполнил космический полет на орбитальном комплексе «Салют-6» - «Союз Т-3» в качестве командира экипажа в составе Л. Д. Кизим, О. Г. Макаров, Г. М. Стрекалов.

С 7.9.81 по 10.6.82 г. прошел непосредственную подготовку по программе экспедиции посещения на «Салют-7» в составе дублирующего советско-французского экипажа: Л. Д. Кизим, В. А. Соловьев, Патрик Бодри. По программе основной экспедиции на «Салют-7» готовился с 22.11.82 в составе экипажа: Л. Д. Кизим, В. А. Соловьев, а с 1.11.83 г. - в составе экипажа Л. Д. Кизим, В. А. Соловьев, О. Ю. Атьков.

Второй космический полет продолжительностью 237 суток Л. Д. Кизим совершил в 1984 г. в качестве командира корабля «Союз Т-10» и орбитальной станции «Салют-7». Третий космический полет в качестве командира корабля «Союз Т-15» и орбитальной станции «Мир» им был совершен в 1986 году. В этом полете впервые в истории космонавтики был совершен перелет со станции «Мир» на станцию «Салют-7» и обратно.

За время подготовки глубоко изучил системы корабля и станции, средства управления ими. Обладает высоко развитыми и устойчивыми навыками профессиональной деятельности. Является отличным оператором. Работает четко, организованно. Все свои действия четко контролирует посредством бортовой документации. Обладает развитым чувством времени и внутренней дисциплиной. Сурдокамерные испытания, неоднократные тренировки, проведенные в различных климатогеографических зонах с экстремальными климатическими воздействиями, в труднодоступной местности и на воде, а также результаты космического полета продемонстрировали такие качества личности, как выносливость, высокую устойчивость к стрессу, жизнелюбие и оптимизм, способность к длительному волевому усилию и к поддержанию высокого уровня работоспособности. Хорошо переносит перегрузки, вестибулярные воздействия, умеренные степени гипоксии и большие степени разряжения атмосферы.

Целеустремлен, высокомотивирован на профессиональную деятельность. В процессе обучения материал усваивает не сразу. Для его качественного усвоения много работает, проявляет упорство, высокую личную заинтересованность в приобретении новых знаний и совершенствовании профессиональных качеств. Обладает развитым практическим интеллектом. Мышление отличается реалистичностью, конкретностью образов. В связи с этим при усвоении новых данных стремится дойти до сущности явления, создать себе предметно-образное представление о нем. Благодаря этому новые навыки и умения формируются медленно, но отличаются большой устойчивостью и надежностью. Имеет большой потенциал развития. В обучении занимает активные позиции. К замечаниям инструкторов, методистов, преподавателей относится с вниманием. Участвует в анализе своих ошибок, совместно ищет пути их устранения.

Поведение строит исходя из предыдущего опыта. Предпочитает репродуктивный стиль деятельности, при котором анализ ситуации и принятие решения осуществляются на основе ранее отработанных и закрепленных алгоритмов. Трудолюбив, не боится трудностей, не стремится облегчить себе жизнь. В летной деятельности предпочитает наиболее сложные виды полетов, требующие большой работы с управлением, с оборудованием кабины. На тренировках и испытаниях на выживаемость сложность ситуации воспринимает с достоинством, как должное. Постоянно поддерживает высокую интенсивность подготовки, независимо от того, выполняет ли функции дублера или командира основного экипажа. В личной жизни скромен, непритязателен. Однако внимательно относится к своему социальному статусу. Жизнерадостный, добрый, умеет испытывать удовольствие от жизни. Обладает развитым чувством юмора. Эмоции отличаются яркостью и выразительностью. В контактах с окружающими осторожен. Уделяет большое внимание эмоциональным нюансам и оттенкам отношений. Высокую чувствительность маскирует использованием отработанных схем поведения и отношений. Обладает развитой способностью к рефлексии, интуитивному восприятию чувств и состояния других людей. Хорошо ощущает ситуацию, социально пластичен, с большими адаптационными возможностями. Для достижения поставленной цели стремится находить с окружающими взаимоприемлемые, дружеские формы отношений. Проявляет устойчивую заинтересованность в позитивном решении конфликтных ситуаций, однако в случаях открытого ущемления его позиций может быть резким и непримиримым.

В качестве командира экипажей, проходивших подготовку, выявил широкий диапазон тактик демократического стиля руководства, способность ценить и в полной мере использовать положительные качества партнеров. В совместной работе способен к эффективному деловому сотрудничеству, к предоставлению своим партнерам возможности для реализации ими инициативных действий ради решения поставленных задач.

В экипаже занимает лидерские позиции. Хорошо знает и умело использует в работе особенности своих партнеров. Настроен на максимально полную реализацию программы полета. Свою основную задачу видит в четкой организации работы и жизнедеятельности экипажа. Большое внимание уделяет научным экспериментам, требующим выполнения динамических операций - точных ориентации и экономии топлива.

Психологический прогноз выполнения программы космического полета благоприятный. Готов к качественному выполнению задач летно-космических испытаний.

Борт-инженер космического корабля «Союз Т-10» и «Союз Т-15»

Соловьев Владимир Алексеевич, 1946 г. рождения, русский. В 1970 г. закончил МВТУ им. Баумана по специальности инженер-механик. В 1977 г. принят в ряды Коммунистической партии Советского Союза. Продолжительное время участвовал в разработке и испытаниях двигательных установок космических кораблей и станций. С 1977 г. занимается разработкой бортовой документации. Имеет опыт непосредственного участия в управлении космическими полетами. С 1978 г. готовился к полету в составе группы инженеров-испытателей. Экзамены теоретического курса сдал с оценкой «хорошо». На непосредственной подготовке по программе экспедиции посещения на станцию «Салют-7» находился в составе международного экипажа: Л. Д. Кизим, В. А. Соловьев, Патрик Бодри с 7.9.81 по 10.6.82 г. По программе основной экспедиции на станцию «Салют-7» готовился с 22.11.82 с Л. Д. Кизимом, а с 1.11.83 г. - в составе экипажа: Л. Д. Кизим, В. А. Соловьев, О. Ю. Атьков.

Свой первый космический полет продолжительностью 237 суток В. А. Соловьев совершил в 1984 году в качестве бортинженера корабля «Союз Т-10» и орбитальной станции «Салют-7». Второй космический полет им был совершен в 1986 г. совместно с Л. Д. Кизимом на корабле «Союз Т-15».

В процессе обучения продемонстрировал высокий исходный уровень общетехнических знаний. Проявил себя как грамотный, эрудированный инженер. Отличается широким диапазоном интеллектуальных возможностей, гармонично сочетающим в себе абстрактно-теоретическую и практическую направленность мышления. Умственная работоспособность характеризуется высоким исходным уровнем, эффективным формированием и гибкостью интеллектуальных навыков. Новый материал усваивает быстро, однако для поддержания высокого уровня подготовленности нуждается в периодическом подкреплении пройденного.

Работает старательно, добросовестно.

Ситуацию воспринимает во всей ее сложности, целостности. Стремится детально разобраться в ней, выявить наиболее важные, узловые моменты и сконцентрировать на них свое внимание. Склонен к перспективному планированию деятельности. Обладает развитой дисциплиной ума. В условиях дефицита времени действует внимательно и уверенно. Развитая способность к интуиции, объективному наблюдению и контролируемому мышлению обеспечивает самостоятельность, критичность, быстроту принятия решения. В сложных профессиональных ситуациях работает без особого внутреннего напряжения. Предпочитает низкорегламентированные виды деятельности. Дисциплинирован, внутренне собран. В поведении стремится к соблюдению принятых в ближайшем окружении правил и норм. В сложных ситуациях межличностного взаимодействия проявляет сдержанность, осторожность, стремится к деловому и бесконфликтному их разрешению. В общении рефлексивен, хорошо ощущает состояния других лиц. Внимателен, предусмотрителен, однако не склонен к установлению близких доверительных отношений.

Хорошо контролирует свое поведение и эмоции. Внимательно относится к оценке своей деятельности другими лицами. Заинтересован в обеспечении своих позиций. Уровень притязаний высокий, адекватный своим интеллектуальным возможностям. Целеустремлен и настойчив в достижении цели. Социально адаптирован хорошо.

В экипажах занимает активные позиции. Внимательно и вдумчиво относится к деятельности своих партнеров, стремится внести существенный вклад в общий результат работы.

В составе настоящего экипажа чувствует себя уверенно и свободно. Своими общетеоретическими знаниями, большим творческим потенциалом и развитой пластичностью мышления удачно дополняет практический опыт командира. Удовлетворен своими позициями в экипаже, хорошо ориентирован в индивидуальных особенностях партнеров. Выявляет положительные эмоциональные установки к ним.

Космонавт-исследователь космического корабля «Союз Т-10»

Атьков Олег Юрьевич, 1949 г. рождения, русский. В 1973 году закончил 1 Московский медицинский институт им. И. М. Сеченова. После окончания института работал в НИИ кардиологии им. А. А. Мясникова АМН СССР. В настоящее время заведующий лабораторией ультразвуковых методов исследования Всесоюзного кардиологического научного центра АМН СССР. Активно и увлеченно занимается научно-исследовательской работой. Имеет 5 изобретений и более 30 научных работ. За разработку и внедрение ульразвуковых методов диагностики заболеваний сердца в 1978 г. удостоен премии Ленинского комсомола. Кандидат медицинских наук. Член КПСС с 1977 г.

С 1975 г. принимал участие в клинико-физиологических обследованиях экипажей. Хорошо знает физиологические механизмы воздействия факторов космического полета на организм человека. В 1977 г. приступил к специальным тренировкам на базе ИМБП. С июня по сентябрь 1983 г. прошел курс общекосмической подготовки. С ноября 1983 г. находился на непосредственной подготовке к полету на орбитальном комплексе «Союз Т» - «Салют-7», который был осуществлен в 1984 г. и составлял по продолжительности 237 суток. В процессе подготовки проявил высокую активность, заинтересованность в возможно более полном освоении специальных знаний, стремление внести свой существенный вклад в работу экипажа. Имеет общий налет на самолете Л-39 с инструктором - 12 ч, 4 полета на Ил-76К с воспроизведением режимов невесомости, 2 парашютных прыжка. Участвовал в тренировках по покиданию спускаемого аппарата на море и по эвакуации на вертолете из высокоствольного леса. Проявил хорошую устойчивость к воздействию экстремальных факторов, оптимизм, чувство юмора. Летал с удовольствием. В полетах держался спокойно, изменения в воздушной обстановке воспринимал правильно. При выполнении нештатных ситуаций был инициативен и решителен, быстро ориентировался в обстановке. Показанные элементы техники пилотирования и фигуры пилотажа усвоил быстро. Максимальные нагрузки по полету, перегрузки до 6g и большие угловые скорости вращения на пилотаже переносил хорошо, сохраняя внимание и способность анализировать информацию в полном объеме. Высоко продуктивен в познавательной деятельности.

Практическая направленность интеллекта сочетается с абстрактными формами мышления, нестандартными, оригинальными приемами анализа. Ситуацию воспринимает во всей ее целостности и сложности. Обладает высоким творческим потенциалом, способен к самостоятельной исследовательской деятельности.

Эмоциональная сфера характеризуется высокой дифференцированностью, зрелостью и развитой системой волевого самоконтроля. Устойчив и надежен в стрессе.

Занимает активные жизненные позиции. Увлечен своей профессией. Стремится к раширению сферы деятельности. Целеустремлен. Уровень мотивации на достижении цели высокий. Свое поведение строит на основе достаточно жестких и стабильных индивидуальных установок. Находчив. В пределах своей компетенции предпочитает иметь собственное мнение. Несмотря на высокий интеллектуальный самоконтроль и стремление скрыть импульсивность, может допускать действия, приводящие к осложнению межличностных отношений. В конфликтных ситуациях склонен реагировать радикально. По характеру лидер. При руководстве в группе обнаруживает энергичность и большие организаторские способности. Требователен и критичен к себе и окружающим.

В делах требует ясности, всегда стремится быть максимально информированным, не выносит неопределенности и колебаний со стороны партнеров, нетерпим к нарушению другими принятых правил и норм отношений. Уровень самооценки и притязания высокий, адекватный. Собственные эмоциональные проблемы и слабости старается игнорировать. Твердость и решимость сочетаются с чувствительностью, способностью к глубокому сопереживанию. В выборе партнеров пользуется самыми строгими критериями. Во взаимоотношениях ищет доказательств искренности. При достижении общих целей стремится к сотрудничеству и гармонии в отношениях, к взаимопониманию и взаимным благожелательным уступкам.

В экипаже занимает активные позиции. Хорошо понимает свои задачи. Возложенные на него функциональные обязанности выполняет добросовестно, с максимальной отдачей. Инициативно берет на себя решение всех вопросов, касающихся здоровья членов экипажа. От исполнителей требует обязательности, четкости в работе и организованности.

В составе экипажа прошел 15 тренировок на транспортном корабле. Ориентируется в системах корабля и станции в пределах необходимого. По программе медицинских исследований подготовлен хорошо.


На тренажёре орбитальной станции «Салют»

В целом для этой экспедиции была характерна высокая загруженность циклограммы ответственными и трудоемкими работами в неблагоприятных условиях режима труда и отдыха, предъявлявшими повышенные требования к психической сфере космонавтов и требовавшими мобилизации всех внутренних психофизиологических резервов.

Экипаж на высоком профессиональном уровне справился со всеми задачами по выходу в открытый космос и проведению ремонтно-восстановительных работ. Установки на выполнение этих работ у космонавтов носили стабильно прогрессивный характер и практически реализовывались в тщательности проведения подготовки к ним, в эффективности общего взаимодействия по отработке циклограммы предстоящих действий и в появлении большого количества инициативных, творческих предложений. Выполненными работами космонавты были глубоко удовлетворены. Экипаж работал целеустремленно, проявляя настойчивость, упорство и волю в достижении поставленных целей, выявив при этом развитое чувство долга и ответственности.

Сегодня стартовала Всемирная неделя космоса. Проводится она ежегодно с 4 по 10 октября. Ровно 60 лет назад на околоземную орбиту вывели первый рукотворный объект советский «Спутник-1». Он вращался вокруг Земли 92 дня, пока не сгорел в атмосфере. После этого открылась дорога в космос и человеку. Стало понятно, что его нельзя отправлять с билетом в один конец. Как развивались космические технологии, узнал корреспондент телеканала «МИР 24» Владимир Сероухов.

В 1961 году саратовские зенитчики засекли на радаре неопознанный летающий объект. Их заранее предупредили: если они увидят такой падающий с неба контейнер, мешать его полету не стоит. Ведь это первый в истории космический спускаемый аппарат с человеком на борту. Но приземляться в этой капсуле было небезопасно, поэтому на высоте 7 километров катапультировался и спустился на поверхность уже с парашютом.

Капсула корабля «Восток», на сленге инженеров - «Шарик», тоже спустилась на парашюте. Так на Землю вернулись Гагарин, Терешкова и другие первопроходцы космоса. Из-за особенностей конструкции пассажиры испытывали невероятные перегрузки в 8 g. Гораздо легче условия в капсулах «Союз». Их используют более полувека, но в скоро должны заменить новым поколением кораблей - .

«Это кресло командира экипажа и второго пилота. Как раз те места, с которых будет выполняться управление кораблем, контроль всех систем. Кроме этих кресел по бокам будут еще два кресла. Это уже для исследователей», - рассказывает заместитель начальника летно-испытательного отдела РКК «Энергия» Олег Кукин.

По сравнению с семейством кораблей «Союз», которые все-таки морально устарели, и где в тесноте могли разместиться лишь трое космонавтов, капсула «Федерации» - настоящие апартаменты, 4 метра в диаметре. Сейчас главная задача - понять насколько удобен и функционален будет аппарат для экипажа.

Управление теперь доступно двум членам экипажа. Пульт шагает в ногу со временем - это три сенсорных дисплея, где можно контролировать информацию и быть более автономным на орбите.

«Вот для того, что бы выбрать место посадки, куда мы можем сесть. Мы непосредственно видим карту, трассу полета. Погодные условия они также могут контролировать, если эта информация будет передана с Земли, - отметил заместитель начальника летно-испытательного отдела РКК «Энергия» Олег Кукин.

«Федерация» рассчитана для полетов на Луну, это около четырех суток пути в одну сторону. Все это время космонавты должны находиться в позе эмбриона. В спасательных креслах, или ложементах удивительно удобно. Каждое - ювелирная работа.

«Измерение всех антропометрических данных начинается с измерения массы», - указал начальник сектора медицинского отдела НПП «Звезда» Виктор Синигин.

Вот оно - космическое ателье, предприятие «Звезда». Здесь для космонавтов делают индивидуальные скафандры и ложементы. Людям легче 50 килограммов путь на борт заказан, как и тем, кто тяжелее 95. Рост тоже должен быть средним, чтобы уместиться в салоне корабля. Поэтому и мерки снимают в позе эмбриона.

Так отливали кресло для японского космонавта Коичи Ваката. Получили отпечаток таза, спины и головы. В условиях невесомости рост любого космонавта может увеличиться на пару сантиметров, так что ложемент делают с запасом. Он должен быть не просто комфортным, но и безопасным в случае жесткой посадки.

«Сама идея моделирования в том, что бы уберечь внутренние органы. Почки, печень они капсулированные. Если дать им возможность расшириться они могут порваться, как полиэтиленовый пакет с водой, упавший на пол», - пояснил Синигин.

Всего таким способом сделали 700 ложементов не только для россиян, но и для японцев, итальянцев и даже коллег из Штатов, которые работали на станциях «Мир» и МКС.

«Американцы на своем «Шаттле» везли наши ложементы и скафандры, которые мы для них делали, и другое спасательное снаряжение. Оставляли это все на станции, на случай аварийного покидания станции, но уже на нашем корабле», - рассказал ведущий инженер испытательного отдела НПП «Звезда» Владимир Масленников.

Косцов Матвей

Участник городских научных чтений детей младшего школьного возраста секции "Мир космоса". Ученик рассказывает об устройстве космических кораблей "Восток", "Восход" и "Союз".

Скачать:

Предварительный просмотр:

Городские научные чтения детей младшего школьного возраста

Секция «Мир Космоса»

Тема: «Устройство космических кораблей»

Класс 3 Б МБОУ-гимназии № 2

Научный руководитель Мосолова Г.В., учитель начальных классов

Тула 2013 г.

Введение

Меня очень интересует устройство космических кораблей. Во-первых, потому, что это большой и сложный аппарат, над созданием которого трудится много ученых и инженеров. Во-вторых, корабль на несколько часов или даже суток становится домом для космонавта, где необходимы нормальные человеческие условия – космонавт должен дышать, пить, есть, спать. В процессе полета космонавту требуется по своему усмотрению разворачивать корабль и менять орбиту, то есть корабль при движении в пространстве должен легко управляться. В-третьих, в будущем я бы сам хотел конструировать космические корабли.

Космический корабль предназначен для полетов в космическое пространство одного или нескольких человек и безопасного возвращения на Землю после исполнения задания.

Технические требования к космическому кораблю более жесткие, чем к любым другим космическим аппаратам. Условия полета (перегрузки, температурный режим, давление и т.п.) должны выдерживаться для них очень точно, дабы не создалась угроза жизни человека.

Важная особенность пилотируемого космического корабля – наличие системы аварийного спасения.

Только в России, США и Китае созданы пилотируемые космические корабли, так как эта задача высокой сложности и стоимости. А многоразовые системы пилотируемых космических кораблей имеют только Россия и США.

В данной работе я попытался рассказать об устройстве космических кораблей «Восток», «Восход» и «Союз».

«Восток»

Серия советских космических кораблей «Восток» предназначена для пилотируемых полётов по околоземной орбите. Создавались они под руководством генерального конструктора Сергея Павловича Королёва с 1958 по 1963 год.

Первый пилотируемый полет космического корабля «Восток» с Ю.А. Гагариным на борту состоялся 12 апреля 1961 г., это был первый в мире космический аппарат, позволивший осуществить полёт человека в космос.

Основные научные задачи, стоявшие для корабля «Восток»: изучение воздействий условий орбитального полёта на состояние и работоспособность космонавта, отработка конструкции и систем, проверка основных принципов построения космических кораблей.

Общая масса космического корабля – 4,73 тонны, длина – 4,4 м, максимальный диаметр – 2,43 м.

Корабль состоял из сферического спускаемого аппарата (массой 2,46 тонны и диаметром 2,3 м), также выполняющего функции орбитального отсека и конического приборного отсека. Отсеки механически соединялись между собой при помощи металлических лент и пиротехнических замков. Корабль оснащался системами: автоматического и ручного управления, автоматической ориентации на Солнце, ручной ориентации на Землю, жизнеобеспечения, командно-логического управления, электропитания, терморегулирования и приземления. Для обеспечения задач по работе человека в космическом пространстве корабль снабжался автономной и радиотелеметрической аппаратурой для контроля и регистрации параметров, характеризующих состояние космонавта, конструкции и систем, ультракоротковолновой и коротковолновой аппаратурой для двусторонней радиотелефонной связи космонавта с наземными станциями, командной радиолинией, программно-временным устройством, телевизионной системой с двумя передающими камерами для наблюдения за космонавтом с Земли, радиосистемой контроля параметров орбиты и пеленгации корабля, тормозной двигательной установкой ТДУ-1 и другими системами. Вес космического корабля вместе с последней ступенью ракеты-носителя составлял 6,17 тонны, а их длина в связке – 7,35 м.

Спускаемый аппарат имел два иллюминатора, один из которых размещался на входном люке, чуть выше головы космонавта, а другой, оснащённый специальной системой ориентации, в полу у его ног. Космонавт, одетый в скафандр, размещался в специальном катапультируемом кресле. На последнем этапе посадки, после торможения спускаемого аппарата в атмосфере, на высоте 7 км, космонавт катапультировался из кабины и совершал приземление на парашюте. Кроме того, была предусмотрена возможность приземления космонавта внутри спускаемого аппарата. Спускаемый аппарат имел собственный парашют, однако не был оснащён средствами выполнения мягкой посадки, что грозило оставшемуся в нём человеку серьёзным ушибом при совместном приземлении.

В случае отказа автоматических систем космонавт мог перейти на ручное управление. Корабли «Восток» не были приспособлены для полётов человека на Луну, а также не допускали возможности полёта людей, не прошедших специальной подготовки.

«Восход»

Многоместные космические корабли «Восход» осуществляли полёты на околоземной орбите. Эти корабли фактически повторяли корабли серии «Восток» и состояли из сферического спускаемого аппарата диаметром 2,3 метра, в котором размещались космонавты, и конического приборного отсека (массой 2,27 т., длиной 2,25 м и шириной 2,43 м.), в котором находились топливные баки и двигательная установка. В корабле «Восход-1» космонавты для экономии места располагались без скафандров. В первый космический экипаж входил конструктор спускаемых аппаратов Константин Феоктистов.

«Союз»

«Союз» – серия многоместных космических кораблей для полетов по околоземной орбите.

Ракетно-космический комплекс «Союз» начал проектироваться в 1962 г. как корабль советской программы для облёта Луны.

Корабли этой серии состоят из трёх модулей: приборно-агрегатного отсека, спускаемого аппарата, бытового отсека.

Система энергоснабжения состоит из солнечных батарей и аккумуляторов.

В спускаемом аппарате находятся места для космонавтов, системы жизнеобеспечения, управления, парашютная система. Длина отсека 2,24 м, диаметр 2,2 м. Бытовой отсек имеет длину 3,4 м, диаметр 2,25 м.

Заключение

На космических кораблях используются все лучшие наисовременнейшие разработки человечества, новейшие передовые технологии и бортовое оборудование.

На смену «Востокам», «Восходам» и «Союзам» пришли более совершенные орбитальные станции нового поколения и новых возможностей.

Они открыли еще одну страницу в истории не только российской, но и мировой космонавтики, объединили космонавтов многих стран.

Позже появились «Шаттлы», «Бураны» и другие космические корабли, но основой для разработок современных летательных аппаратов послужили именно эти три, описанные в моей работе.

Я очень надеюсь, что, когда вырасту, тоже смогу создать или помочь в создании нового сверхсовременного космического корабля, который долетит до очень далеких галактик.

Список используемой литературы

  1. Энциклопедический словарь юного астронома. Москва. 2006 г. Составитель Ерпылев Н.П.;
  2. Энциклопедия для детей. Космонавтика. Москва. 2010 г.
  3. Великие подвиги. Серия «Энциклопедия открытий и приключений». Москва. 2008 г.
Быстроходные транспортные машины отличаются от машин, передвигающихся с малой скоростью, легкостью конструкции. Вес огромных океанских лайнеров исчисляется сотнями тысяч килоньютонов. Скорость их передвижения сравнительно невелика (= 50 км/ч). Вес быстроходных катеров не превышает 500 - 700 кн, но зато они могут развивать скорость до 100 км/ч. С увеличением скорости передвижения снижение веса конструкции транспортных машин становится все более важным показателем их совершенства. Особенно большое значение вес конструкции имеет для летательных аппаратов (самолетов, вертолетов).

Космический корабль тоже летательный аппарат, но только предназначен он для передвижения в безвоздушном пространстве. Летать по воздуху можно гораздо быстрее, чем плыть по воде или передвигаться по земле, а в безвоздушном пространстве можно развивать еще большие скорости, но, чем больше скорость, тем важнее вес конструкции. Увеличение веса космического корабля приводит к очень большому увеличению веса ракетной системы, которая выводит корабль в запланированный район космического пространства.

Поэтому все, что находится на борту космического корабля, должно весить как можно меньше, и ничего не должно быть лишнего. Это требование создает одну из самых больших трудностей для конструкторов космических кораблей.

Из каких основных частей состоит космический корабль? Космические аппараты делятся на два класса: обитаемые (на борту их находится экипаж из нескольких человек) и необитаемые (на борту их устанавливается научная аппаратура, которая автоматически передает на Землю все данные измерений). Мы будем рассматривать только обитаемые космические корабли. Первым обитаемым космическим кораблем, на котором совершил свой полет Ю. А. Гагарин, был «Восток». За ним следуют корабли из серии «Восход». Это уже не одноместные, как «Восток», а многоместные аппараты. На космическом корабле «Восход» впервые в мире был совершен групповой полет трех летчиков-космонавтов - Комарова, Феоктистова, Егорова.

Следующая серия космических кораблей, созданных в Советском Союзе, получила название «Союз». Корабли этой серии гораздо сложнее по устройству, чем их предшественники, и задачи, которые они могут выполнять, также сложнее. В США также были созданы космические корабли различных типов.

Рассмотрим общую схему устройства обитаемого космического корабля на примере американского корабля «Аполлон».


Рис. 10. Схема трехступенчатой ракеты с космическим кораблем и системой спасения.


На рисунке 10 приведена схема общего вида ракетной системы «Сатурн» и пристыкованного к ней космического корабля «Аполлон». Космический корабль находится между третьей ступенью ракеты и устройством, которое крепится к космическому кораблю на ферме,- оно называется системой аварийного спасения. Для чего предназначено это устройство? При работе двигателя ракеты или ее системы управления во время запуска ракеты не исключается появление неполадок. Иногда эти неполадки могут привести к аварии - ракета упадет на Землю. Что при этом может произойти? Компоненты топлива смешаются, и образуется море огня, в котором окажутся и ракета и космический корабль. Больше того, при смешении компонентов топлива могут образовываться и взрывчатые смеси. Следовательно, если по какой-либо причине произойдет авария, необходимо корабль увести от ракеты на некоторое расстояние и только после этого приземлиться. При этих условиях ни взрывы, ни пожар для космонавтов не будут опасны. Вот для этой цели и служит система аварийного спасения (сокращенно САС).

В систему САС входят основной и управляющий двигатели, работающие на твердом топливе. Если на систему САС поступает сигнал об аварийном состоянии ракеты, она срабатывает. Космический корабль отделяется от ракеты, а пороховые двигатели системы аварийного спасения уводят космический корабль вверх и в сторону. Когда пороховой двигатель заканчивает работу, из космического корабля выбрасывается парашют и корабль плавно опускается на Землю. Система САС предназначена для спасения космонавтов в случае создания аварийной ситуации, в период запуска ракеты-носителя и полета ее на активном участке.

Если запуск ракеты-носителя прошел нормально и полет на активном участке успешно завершается, надобность в системе аварийного спасения отпадает. После вывода космического корабля на околоземную орбиту эта система становится бесполезной. Поэтому перед выходом космического корабля на орбиту система аварийного спасения отбрасывается от корабля как ненужный балласт.

Система аварийного спасения непосредственно крепится к так называемому спускаемому или возвращаемому аппарату космического корабля. Почему он имеет такое название? Мы уже говорили, что космический корабль, отправляющийся в космический полет, состоит из нескольких частей. А вот на Землю из космического полета возвращается всего лишь одна его составная часть, которая поэтому и называется возвращаемым аппаратом. Возвращаемый, или спускаемый, аппарат, в отличие от других частей космического корабля, имеет толстые стенки и специальную форму, наиболее выгодную с точки зрения полета в атмосфере Земли с большими скоростями. Возвращаемый аппарат, или командный отсек,- это место, где находятся космонавты во время вывода космического корабля на орбиту и, конечно, во время спуска на Землю. В нем устанавливается большая часть аппаратуры, с помощью которой управляют кораблем. Так как командный отсек предназначен для спуска на Землю космонавтов, то в нем располагаются также и парашюты, с помощью которых производится торможение космического корабля в атмосфере, а затем и плавный спуск.

За спускаемым аппаратом идет отсек, называемый орбитальным. В этом отсеке устанавливается научная аппаратура, необходимая для проведения специальных исследований в космосе, а также системы, обеспечивающие корабль всем необходимым: воздухом, электроэнергией и др. Орбитальный отсек после выполнения космическим кораблем задания на Землю не возвращается. Его очень тонкие стенки не способны выдержать тот нагрев, которому подвергается возвращаемый аппарат при спуске на Землю, проходя плотные слои атмосферы. Поэтому, войдя в атмосферу, орбитальный отсек сгорает, подобно метеору.

В космических кораблях, предназначенных для полета в дальний космос с высадкой людей на другие небесные тела, необходимо иметь еще один отсек. В этом отсеке космонавты могут спускаться на поверхность планеты, а когда нужно, взлетать с нее.

Мы перечислили основные части современного космического корабля. Теперь посмотрим, как обеспечивается жизнедеятельность экипажа и работоспособность аппаратуры, устанавливаемой на борту корабля.

Для обеспечения жизнедеятельности человека требуется немало. Начнем с того, что человек не может существовать ни при очень низких, ни при очень высоких температурах. Регулятором температуры на земном шаре является атмосфера, т. е. воздух. А как обстоит дело с температурой на космическом корабле? Известно, что существует три вида передачи тепла от одного тела к другому - теплопроводность, конвекция и излучение. Для передачи тепла теплопроводностью и конвекцией нужен передатчик тепла. Следовательно, в космосе эти виды теплопередачи невозможны. Космический корабль, находясь в межпланетном пространстве, получает тепло от Солнца, Земли и других планет исключительно излучением. Стоит создать тень из тонкого листа какого-либо материала, который преградит путь лучам Солнца (или свету от других планет) к поверхности космического корабля - и он перестанет нагреваться. Поэтому теплоизолировать космический корабль в безвоздушном пространстве нетрудно.

Однако при полете в космическом пространстве приходится опасаться не перегрева корабля солнечными лучами или его переохлаждения в результате излучения тепла стенками в окружающее пространство, а перегрева от тепла, которое выделяется внутри самого космического корабля. За счет чего может повышаться температура в корабле? Во-первых, сам человек является источником, непрерывно излучающим тепло, а во-вторых, космический корабль - это очень сложная машина, оборудованная многими приборами и системами, работа которых связана с выделением большого количества тепла. Перед системой, обеспечивающей жизнедеятельность членов экипажа корабля, стоит очень важная задача - все тепло, выделяемое и человеком, и приборами, своевременно вывести за пределы отсеков корабля и обеспечить поддержание температуры в них на уровне, который требуется для нормального существования человека и работы приборов.

Как можно в условиях космоса, где тепло передается только лучеиспусканием, обеспечить необходимый температурный режим в космическом корабле? Вы знаете, что летом, когда светит знойное Солнце, все ходят в светлой одежде, в которой менее ощущается жара. В чем тут дело? Оказывается, светлая поверхность в отличие от темной плохо поглощает лучистую энергию. Она ее отражает и поэтому гораздо слабее нагревается.

Вот этим свойством тел в зависимости от цвета окраски в большей или меньшей степени поглощать или отражать лучистую энергию можно воспользоваться для регулирования температуры внутри космического корабля. Имеются такие вещества (они называются термофототропами), которые изменяют свою окраску в зависимости от температуры нагрева. При повышении температуры они начинают обесцвечиваться и тем сильнее, чем выше температура их нагрева. Наоборот, при охлаждении они темнеют. Такое свойство термофототропов может оказаться весьма полезным, если их применять в системе терморегулирования космических кораблей. Ведь термофототропы позволяют поддерживать температуру какого-либо объекта на определенном уровне автоматически, без применения каких-либо механизмов, подогревателей или охладителей. Вследствие этого система терморегулирования с применением термофототропов будет иметь небольшую массу (а это для космических кораблей очень важно), для приведения ее в действие не потребуется затрат энергии. (Системы терморегулирования, работающие без потребления энергии, называются пассивными.)

Существуют другие пассивные системы терморегулирования. Все они обладают одним важным свойством - малой массой. Однако они ненадежны в работе, особенно при длительной эксплуатации. Поэтому космические корабли, как правило, оборудуются так называемыми активными системами регулирования температуры. Отличительной особенностью таких систем является возможность изменения режима работы. Активная система регулирования температуры подобна батарее системы центрального отопления - если вам нужно, чтобы в комнате было холоднее, вы перекрываете доступ горячей воды в батарею. Наоборот, если нужно поднять температуру в комнате, перекрывной кран открывается полностью.

Задача системы терморегулирования - поддерживать температуру воздуха в кабине корабля в пределах обычной, комнатной, т. е. 15 - 20°С. Если помещение обогревается с помощью батарей центрального отопления, то температура в любом месте помещения практически устанавливается одна и та же. Почему около горячей батареи и вдалеке от нее разница в температуре воздуха бывает очень незначительной? Это объясняется тем, что в помещении идет непрерывное перемешивание теплых и холодных слоев воздуха. Теплый (легкий) воздух поднимается вверх, холодный (тяжелый) опускается вниз. Такое движение (конвекция) воздуха обусловлено наличием силы тяжести. В космическом корабле все невесомо. Следовательно, там не может быть конвекции, т. е. перемешивания воздуха и выравнивания температуры по всему объему кабины. Нет естественной конвекции, но ее создают искусственно.

Для этой цели в системе терморегулирования предусматривается установка нескольких вентиляторов. Вентиляторы, приводимые в движение электромотором, заставляют воздух непрерывно циркулировать по кабине корабля. Благодаря этому тепло, выделяемое телом человека или каким-либо прибором, не скапливается в одном месте, а равномерно распределяется по всему объему.


Рис. 11. Схема охлаждения воздуха кабины космического корабля.


Практика показала, что в космическом корабле тепла образуется всегда больше, чем излучается в окружающее пространство через стенки. Поэтому в нем целесообразно устанавливать батареи, по которым нужно прокачивать холодную жидкость. Этой жидкости будет отдавать тепло прогоняемый с помощью вентилятора воздух кабины (см. рис. 11), охлаждаясь при этом. В зависимости от температуры жидкости в радиаторе, а также его размеров можно отвадить тепла больше или меньше и таким образом поддерживать температуру внутри кабины корабля на требуемом уровне. Радиатор, охлаждающий воздух, служит и еще для одной цели. Вы знаете, что при дыхании человек выдыхает в окружающую атмосферу газ, в котором содержится значительно меньше кислорода, чем в воздухе, но зато больше углекислого газа и водяных паров. Если водяные пары не удалять из атмосферы, они будут в ней накапливаться, пока не наступит состояние насыщения. Насыщенный пар будет конденсироваться на всех приборах, стенках корабля, все отсыреет. Конечно, в таких условиях человеку длительное время жить и работать вредно, да и не все приборы при такой влажности могут нормально функционировать.

Радиаторы, о которых мы говорили, помогают удалять излишки водяных паров из атмосферы кабины космического корабля. Вы замечали, что происходит с холодным предметом, внесенным с улицы зимой в теплую комнату? Он сразу же покрывается мельчайшими капельками воды. Откуда они взялись? Из воздуха. В воздухе всегда содержатся в том или ином количестве водяные пары. При комнатной температуре (+20°С) в 1 м³ воздуха может содержаться влаги в виде пара до 17 г. С повышением температуры воздуха повышается и возможное содержание влаги, и наоборот: с понижением температуры в воздухе может находиться меньше водяных паров. Вот почему на холодных предметах, внесенных в теплое помещение, и выпадает влага в виде росы.

В космическом корабле холодным предметом служит радиатор, по которому прокачивается холодная жидкость. Как только в воздухе кабины накапливается слишком много водяных паров, она из воздуха, омывающего трубки радиатора, конденсируются на них в виде росы. Таким образом, радиатор служит не только как средство охлаждения воздуха, но одновременно является его осушителем. Так как радиатор выполняет сразу две задачи - охлаждает и осушает воздух, его называют холодильно-сушильным аппаратом.

Итак, для того чтобы поддерживать в кабине космического корабля нормальную температуру и влажность воздуха, необходимо иметь в системе терморегулирования жидкость, которая должна непрерывно охлаждаться, иначе она не сможет выполнить своей роли - отводить излишки тепла из кабины корабля. Как же охлаждать жидкость? Охладить жидкость, конечно, не проблема, если есть обычный электрохолодильник. Но электрохолодильники на космических кораблях не устанавливают, да они там и не нужны. Космическое пространство тем и отличается от земных условий, что там одновременно хватает и тепла, и холода. Оказывается, чтобы охладить жидкость, с помощью которой поддерживаются на заданном уровне температура и влажность воздуха внутри кабины, ее достаточно на некоторое время поместить в космическое пространство, но так, чтобы она находилась в тени.

В системе терморегулирования, помимо вентиляторов, приводящих в движение воздух, предусматриваются насосы. Их задача - перекачивать жидкость из радиатора, находящегося внутри кабины, в радиатор, установленный на внешней стороне оболочки космического корабля, т. е. в космическом пространстве. Эти два радиатора связаны друг с другом трубопроводами, на которых имеются клапаны и датчики, замеряющие температуру жидкости на входе и выходе из радиаторов. В зависимости от показаний этих датчиков регулируется скорость перекачки жидкости из одного радиатора в другой, т. е. количество тепла, отводимого из кабины корабля.

Какими же свойствами должна обладать жидкость, применяемая в системе регулирования температуры? Так как один из радиаторов находится в космическом пространстве, где возможны очень низкие температуры, то одно из главных требований к жидкости - низкая температура затвердевания. Действительно, если жидкость во внешнем радиаторе замерзнет, то система регулирования температуры выйдет из строя.

Поддержание температуры внутри космического корабля на уровне, при котором сохраняется работоспособность человека, очень важная задача. Жить и работать ни в холоде, ни в жаре человек не может. А может ли человек существовать без воздуха? Конечно, нет. Да и такого вопроса перед нами никогда не возникает, так как воздух на Земле находится повсюду. Воздух заполняет и кабину космического корабля. Есть ли разница в обеспечении человека воздухом на Земле и в кабине космического корабля? Воздушное пространство на Земле имеет большой объем. Сколько бы мы ни дышали, сколько бы ни потребляли кислорода для других нужд, его содержание в воздухе практически не меняется.

В кабине космического корабля другое положение. Во-первых, объем воздуха в ней очень мал и, кроме того, нет естественного регулятора состава атмосферы, так как нет растений, которые поглощали бы углекислый газ и выделяли кислород. Поэтому очень скоро люди, находящиеся в кабине космического корабля, начнут ощущать недостаток кислорода для дыхания. Человек нормально себя чувствует, если в атмосфере содержится не менее 19% кислорода. При меньшем содержании кислорода дышать становится трудно. В космическом корабле на одного члена экипажа приходится свободный объем = 1,5 - 2,0 м³. Расчеты показывают, что уже через 1,5 - 1,6 ч воздух в кабине делается непригодным для нормального дыхания.

Следовательно, космический корабль нужно оборудовать системой, которая подпитывала бы его атмосферу кислородом. А откуда взять кислород? Конечно, можно запасать кислород на борту корабля в виде сжатого газа в специальных баллонах. По мере необходимости газ из баллона можно выпускать в кабину. Но такой вид хранения запаса кислорода мало пригоден для космических кораблей. Дело в том, что металлические баллоны, в которых газ находится под большим давлением, очень много весят. Поэтому этот простой способ хранения кислорода на космических кораблях не применяется. Но ведь газообразный кислород можно превратить в жидкость. Плотность жидкого кислорода почти в 1000 раз больше плотности газообразного, вследствие чего для его хранения (одной и той же массы) потребуется гораздо меньшая емкость. Кроме того, жидкий кислород можно хранить под небольшим давлением. Следовательно, стенки сосуда могут быть тонкими.

Однако применение жидкого кислорода на борту корабля сопряжено с некоторыми трудностями. Очень просто подать в атмосферу кабины космического корабля кислород, если он находится в газообразном состоянии, труднее, если он жидкий. Жидкость предварительно нужно превратить в газ, а для этого нагреть. Нагревание кислорода необходимо еще и потому, что его пары могут иметь температуру, близкую к температуре кипения кислорода, т. е. - 183°С. Такой холодный кислород нельзя впускать в кабину, дышать им, конечно, невозможно. Его следует подогреть по крайней мере до 15 - 18°С.

Для газификации жидкого кислорода и нагревания паров потребуются специальные приспособления, что усложнит систему обеспечения кислородом. Нужно еще помнить и о том,что человек в процессе дыхания не только потребляет кислород, находящийся в воздухе, но одновременно выделяет углекислый газ. В час человек выделяет около 20 л углекислого газа. Углекислый газ, как известно, не является отравляющим веществом, однако дышать воздухом, в котором углекислого газа содержится больше 1 - 2%, человеку трудно.

Чтобы воздух кабины космического корабля был пригоден для дыхания, необходимо не только добавлять в него кислород, но и одновременно удалять из него углекислый газ. Для этого удобно было бы иметь на борту космического корабля такое вещество, которое выделяет кислород и в то же время поглощает из воздуха углекислый газ. Такие вещества существуют. Вы знаете, что окись металла - это соединение кислорода с металлом. Ржавчина, например, это окись железа. Окисляются и другие металлы, в том числе и щелочные (натрий, калий).

Щелочные металлы, соединяясь с кислородом, образуют не только окиси,но и так называемые перекиси и надперекиси. В перекисях и надперекисях щелочных металлов кислорода содержится значительно больше, чем в окисях. Формула окиси натрия Na₂O, а надперекиси NaO₂. При действии влаги надперекись натрия разлагается с выделением чистого кислорода и образованием щелочи: 4NaO₂ + 2Н₂О → 4NaOH + 3O₂.

Надперекиси щелочных металлов оказались очень удобными веществами для получения из них кислорода в условиях космического корабля и очистки воздуха кабины от излишков углекислого газа. Ведь щелочь (NaOH), которая выделяется при разложении надперекиси щелочного металла, очень охотно соединяется с углекислым газом. Расчет показывает, что на каждые 20 - 25 л кислорода, выделяющегося при разложении надперекиси натрия, образуется натронная щелочь в количестве, достаточном для связывания 20 л углекислого газа.

Связывание углекислого газа щелочью состоит в том, что между ними происходит химическая реакция: СО₂ + 2NaOH → Na₂CO + Н₂О. В результате реакции образуются углекислый натрий (сода) и вода. Соотношение между кислородом и щелочью, образующимися при разложении надперекисей щелочных металлов, оказалось очень выгодным, так как человек в среднем в час потребляет 25 А кислорода и выделяет за то же время 20 л углекислого газа.

Надперекись щелочных металлов разлагается при взаимодействии с водой. А откуда для этого взять воду? Оказывается, об этом беспокоиться не нужно. Мы уже говорили, что человек при дыхании выделяет не только углекислый газ, но и водяные пары. Влаги, содержащейся в выдыхаемом воздухе, с избытком хватает для разложения необходимого количества надперекиси. Конечно, мы знаем, что потребление кислорода зависит от глубины и частоты дыхания. Вы сидите за столом и спокойно дышите - потребляете одно количество кислорода. А если пробежитесь или физически поработаете, вы дышите глубоко и часто, поэтому и кислорода потребляете больше, чем при спокойном дыхании. Члены экипажа космического корабля будут тоже потреблять неодинаковое количество кислорода в разное время суток. Во время сна и отдыха потребление кислорода минимально, когда же выполняется работа, связанная с движением,- потребление кислорода резко увеличивается.

За счет вдыхаемого кислорода в организме происходят те или иные окислительные процессы. В результате протекания этих процессов образуются водяные пары и углекислый газ. Если организм больше потребляет кислорода, значит, он и больше выделяет углекислого газа и паров воды. Следовательно, организм как бы автоматически поддерживает содержание влаги в воздухе в таком количестве, которое необходимо для разложения соответствующего количества надперекиси щелочного металла.


Рис. 12. Схема подпитки атмосферы кабины космического корабля кислородом и очистки от углекислого газа.


Схема очистки воздуха от углекислого газа и подпитки его кислородом показана на рисунке 12. Воздух кабины прогоняется вентилятором через патроны с надперекисью натрия или калия. Из патронов воздух выходит уже обогащенный кислородом и очищенный от углекислого газа.

В кабине устанавливается датчик, контролирующий содержание кислорода в воздухе. Если датчик показывает, что содержание кислорода в воздухе становится слишком малым, на моторы вентиляторов подается сигнал на увеличение числа оборотов, вследствие чего скорость прохождения воздуха через патроны с надперекисью увеличивается, а следовательно, увеличивается и количество влаги (которая находится в воздухе), попадающей в патрон за одно и то же время. Больше влаги - больше образуется кислорода. Если в воздухе кабины содержится кислорода выше нормы, то от датчиков на моторы вентиляторов поступает сигнал на уменьшение числа оборотов.

В маленьком городке, затерянном в пустынном районе Калифорнии, никому не известный любитель-одиночка пытается тягаться со знаменитыми на весь мир миллиардерами и корпорациями за право строить космические корабли для отправки грузов на околоземную орбиту. У него не хватает помощников и недостаточно ресурсов. Но, несмотря на все трудности, он собирается довести свое дело до конца.

Джо Паппалардо

Дейв Мастен внимательно смотрит на экран своего компьютера. Его палец на мгновение завис над кнопкой мыши. Дейв знает, что вот-вот он откроет письмо от агентства DARPA, и это письмо изменит его жизнь независимо от того, что там написано. Он либо получит финансирование, либо будет вынужден навсегда расстаться со своей мечтой.

Две новости

Это настоящая поворотная точка — ведь на кону вопрос об участии в программе XS-1, финансируемой DARPA, цель которой — строительство многоразового беспилотного космоплана, способного выдержать десять запусков за десять дней, разгоняться до скорости свыше 10 М и с помощью дополнительной ступени доставлять на низкую околоземную орбиту полезный груз весом более 1,5 т. При этом стоимость каждого запуска не должна превышать $5 млн. Дейв Мастен — вечный аутсайдер, беженец из Кремниевой долины, предприниматель-отшельник в области космической индустрии — еще никогда не был столь близок к созданию полноценной космической системы, как в этот раз. Если его компания станет одним из трех участников проекта XS-1, Дейв тут же получит грант в размере $3 млн и дополнительные финансовые вливания в следующем году. А стоимость будущего контракта может превысить $140 млн!


В случае отказа компания Дейва так и останется никому не известной мелкой фирмой, влачащей жалкое существование и лелеющей хрупкую мечту о строительстве орбитальных космических аппаратов. Но, что еще хуже, будет упущена редкая возможность воплотить в жизнь задумку Мастена. Государственные программы космических полетов исторически отдавали предпочтение (по сути, это было требованием) космическим аппаратам, которым для посадки необходим аэродром либо огромный парашют. Мастен предложил создать ракету с вертикальным взлетом и вертикальной посадкой — такую, что при возвращении на Землю ей не понадобится ни посадочная полоса, ни парашют. Программа XS-1 представила удачный шанс осуществить эту идею, но если удача вдруг отвернется и шанс участвовать в ней выпадет другому, то кто знает, откроет ли правительство новые источники финансирования в будущем.

Итак, одно электронное письмо, два совершенно разных пути, один из которых ведет прямиком в космос. Мастен кликает мышкой и начинает читать — медленно, вникая в каждое слово. Закончив, он поворачивается к инженерам, собравшимся у него за спиной, и с невозмутимым выражением лица объявляет: «У меня две новости — хорошая и плохая. Хорошая новость в том, что нас отобрали для участия в XS-1! Плохая — что нас отобрали для участия в XS-1».


Кластер у космопорта

Местность на севере пустыни Мохаве больше напоминает кадры из фильма-катастрофы: заброшенные заправочные станции, изрисованные граффити, и разбитые дороги, на которых кое-где встречаются тушки сбитых животных, лишь подкрепляют это впечатление. Горы, красующиеся вдали на горизонте, неумолимый солнечный зной и кажущееся бесконечным безоблачное голубое небо.

Однако эта сбивающая с толку пустота обманчива: на западе Соединенных Штатов расположена авиационная база Эдвардс (R-2508) — главный испытательный полигон в стране. 50 000 квадратных километров закрытого воздушного пространства то и дело рассекают боевые самолеты. Именно здесь 68 лет назад Чак Йегер стал первым летчиком, превысившим скорость звука в управляемом горизонтальном полете.


Запрет на полеты пассажирских и частных самолетов, однако, не распространяется на резидентов расположенного неподалеку аэрокосмического порта в Мохаве, в 2004 году получившего статус первого коммерческого космопорта в стране. В том же году сюда перебрался и Мастен — сразу после того, как стартап, в котором он работал инженером-программистом, был куплен коммуникационным гигантом Cisco Systems. Из нескольких пустующих зданий, предложенных Дейву при переезде, тот остановил свой выбор на заброшенных казармах морской пехоты, построенных в 1940-х годах. Здание нуждалось в серьезном ремонте: крыша текла, а стены и углы были густо украшены паутиной. Для Дейва это место оказалось идеальным: благодаря высоким шестиметровым потолкам тут могли уместиться все летательные аппараты, которые он и трое его работников конструировали в то время. Еще одним плюсом стала возможность «застолбить» несколько стартовых площадок и осуществлять с них пробные пуски.

На протяжении нескольких лет о существовании компании Masten Space Systems знало лишь несколько специалистов в области космических технологий и несколько соседей-резидентов космопорта, среди которых числятся признанные гиганты индустрии вроде Scaled Composites, положившей начало частным инвестициям в космос, Virgin Galactic Ричарда Брэнсона и Vulcan Stratolaunch Systems Пола Аллена. Их просторные ангары буквально напичканы сложным оборудованием, которое стоит дороже, чем вся MSS вместе взятая. Однако подобная конкуренция не помешала детищу Мастена в 2009 году выиграть $1 млн в устроенном NASA соревновании по строительству лунного посадочного модуля. После этого о компании вдруг заговорили, и Дейв начал получать заказы — кроме NASA, его ракеты стали пользоваться популярностью у известных университетов страны и даже в министерстве обороны — для проведения высотных научных экспериментов и исследований.


Компьютерный макет космического корабля XS-1 с вертикальными взлетом-посадкой, проектируемого компанией Masten Space Systems

После официального включения в программу XS-1 авторитет MSS вырос еще сильнее — в соперничестве с корпорацией Boeing и крупной военно-промышленной компанией Northrop Grumman Мастен выглядел весьма солидно. Помимо этих гигантов индустрии через партнерство с Boeing в проекте задействована Blue Origin — частная аэрокосмическая компания, принадлежащая Джеффу Безосу, а также уже упоминавшиеся Scaled Composites и Virgin Galactic, сотрудничающие с Northrop Grumman. Сама же MSS решила объединить усилия с еще одной небольшой компанией из Мохаве — XCOR Aerospace. Итак, в гонке по созданию многоразового космического грузовика Дейву предстояло схлестнуться с самыми маститыми и отлично обеспеченными корпорациями. До следующего этапа — оценки промежуточных результатов и принятия решения о дальнейшем финансировании — оставалось всего лишь тринадцать месяцев.

Лучше, чем в «Боинге»

Здание MSS находится в таком же состоянии, как и тогда, когда его занял Мастен. Крыша все так же течет, и можно случайно наткнуться на ядовитого паука. По периметру расставлены ящики с инструментами. Кроме баннеров с названием компании, доски, исписанной уравнениями, и американского флага на стенах ничего нет. Центр ангара занимает ракета Xaero-B, она держится на четырех металлических ножках, над которыми находятся два объемных бака сферической формы. Один из них заполняется изопропиловым спиртом, в другой заливается жидкий кислород. Чуть выше по кругу располагаются дополнительные баки с гелием. Они необходимы для работы двигателей реактивной системы управления, предназначенной для контроля пространственного положения корабля. Двигатель в нижней части ракеты крепится в кардановом подвесе, чтобы обеспечить управляемость этой странной насекомоподобной конструкции.


Несколько сотрудников заняты подготовкой Xaero-B к совместному с Университетом Колорадо (Боулдер, США) эксперименту, в котором планируется проверить, сможет ли корабль поддерживать связь с наземными телескопами и участвовать в поиске экзопланет.

Компания Мастена привлекает определенный тип инженеров-механиков, настоящих фанатов своего дела. «Я проходил практику в Boeing в отделе двигателей для модели 777, — рассказывает 26-летний инженер Кайл Ниберг. — Boeing — очень хорошая компания. Но если честно, мне не по душе сидеть в офисе днями напролет. Я представил, что следующие 40 лет моей жизни пройдут так, и здорово перепугался. В небольшой частной компании вроде MSS инженеры могут испытать всю гамму эмоций при воплощении в жизнь своих задумок — от эйфории до полного разочарования. Такое редко где встретишь».

Заправка в точке Лагранжа

Основным направлением деятельности Мастена всегда было создание ракеты, предназначенной для перевозки грузов, а не астронавтов, своего рода «рабочей лошадки». Такие корабли обязательно понадобятся, например, для транспортировки кислорода и водорода с лунной поверхности до заправочной станции, которую однажды поместят в одной из точек Лагранжа между Землей и Луной. Именно поэтому Мастен закладывает в свои разработки принцип вертикального взлета и посадки. «Это единственный из известных мне способов, который сработает на поверхности любого твердого тела в Солнечной системе, — объясняет он. — Ведь самолет или шаттл на Луне не посадишь!»


Кроме того, вертикальные взлет-посадка упрощают повторное использование космического корабля. Некоторые ракеты Мастена уже совершили несколько сотен полетов, подготовка к повторному пуску занимает не более одного дня. По условиям программы XS-1 нужно осуществить десять стартов в течение десяти дней — для MSS это давно стало обычным делом. Здесь Дейв сильно опередил своих конкурентов, которым пока что не удалось сделать это ни разу.

Скромность и трудолюбие

Итак, агентство DARPA объявило, что все три участника программы XS-1 допущены до фазы 1B, на осуществление которой каждая компания получит дополнительно $6 млн. Основными задачами фазы 1 были проведение проектных работ и подготовка инфраструктуры — другими словами, надо было продемонстрировать, что компания сможет работать в XS-1. В фазе 1B участники должны перейти к пробным пускам, собрать соответствующие данные и продолжить совершенствование конструкции, чтобы показать, как они планируют достичь финальной цели. Результаты фазы 1B необходимо предоставить следующим летом, а первый полет XS-1 на орбиту запланирован на 2018 год.


Неважно, каков будет итог этого соревнования, но сам факт, что Дейву удалось продвинуться настолько далеко, может в корне перевернуть индустрию частных космических проектов. «Это полностью меняет условия игры, — полагает Ханна Кернер, исполнительный директор Space Frontier Foundation, бывший инженер NASA. — Агентство DARPA не просто предоставило частным компаниям возможность участвовать в государственной космической программе, но и признало в недавно возникших небольших компаниях потенциально серьезных игроков». Даже если на мгновение забыть об участии в XS-1, MSS все равно сложно назвать компанией-аутсайдером. В августе у нее открылся новый офис на мысе Канаверал — в космическом центре в штате Флорида, который с недавнего времени начал функционировать как хаб для коммерческих запусков в космос. В этом же бизнес-центре, находящемся неподалеку от Космического центра Кеннеди, расположился офис компании SpaceX.

Несмотря на это, у MSS по‑прежнему не хватает людей и ресурсов, и она все так же представляет собой группу инженеров-романтиков, которые сверлят, долбят молотками и паяют в своем ангаре по соседству с богатыми крупными компаниями. И невольно начинаешь за них болеть — хочется, чтобы у них все получилось.

«Я думаю, мы обязательно потягаемся с нашими конкурентами», — вот и все, что ответил Мастен на вопрос о шансах на успех в XS-1. Он не видит смысла обещать золотые горы, хотя у многих его коллег по цеху это уже вошло в привычку. Многие добиваются успеха, потому что умеют красиво говорить. Дейв не из их числа — он спокоен, трудолюбив, скромен, но так же, как и его соперники, неистово жаждет осуществить свои задумки.